
KIT – University of the State of Baden-Wuerttemberg and

National Research Center of the Helmholtz Association

Jens Kehne | Marius Hillenbrand

Operating Systems Group, Department of Computer Science

www.kit.edu

Microkernel Construction
I.12 – Review

Lecture Summer Term 2017

Wednesday 15:45-17:15 R 131, 50.34 (INFO)

Operating Systems Group

Department of Computer Science

2 12.07.2017

Threading

Thread state must be saved/restored on thread
switch

We need a Thread Control Block (TCB) per thread

TCBs must be kernel objects

TCBs implement threads

We often need to find
Any thread’s TCB using its global ID

The currently executing thread’s TCB
(per processor)

At least partially. We have

found some good reasons to

implement parts of the TCB in

user memory.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

3 12.07.2017

Thread Switch A  B

Thread A is running in user mode

Thread A experiences an end-of-time-slice
or is preempted by a (device) interrupt

We enter kernel mode

The microkernel saves the status of
thread A on A’s TCB

The microkernel loads the status of
thread B from B’s TCB

We leave kernel mode

Thread B is running in user mode

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

4 12.07.2017

Thread Switch A  kernel  B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

5 12.07.2017

Thread Switch A  kernel  B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

?

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

6 12.07.2017

Thread Switch A  kernel  B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel

code

Kernel

stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

7 12.07.2017

Thread Switch A  kernel  B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

IP
SP

FLAGS

Kernel

code

Kernel

stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

8 12.07.2017

Thread Switch A  kernel  B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

Kernel

code

Kernel

stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

9 12.07.2017

Thread Switch A  kernel  B

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

Kernel

code

Kernel

stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

10 12.07.2017

Thread Switch A  kernel  B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

Kernel

code

Kernel

stack

Kernel

stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

11 12.07.2017

Thread Switch A  kernel  B

Processor

tcb B

tcb A

IP
SP

FLAGS

IP
SP

FLAGS

IP
SP

FLAGS

user mode A

kernel

Kernel

code

Kernel

stack

Kernel

stack

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

12 12.07.2017

Thread Switch with single kernel stack

Processor

tcb A

IP
SP

FLAGS IP
SP

FLAGS

user mode A

kernel

Kernel

code

Kernel

stack

Memory

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Continu-

ation

Operating Systems Group

Department of Computer Science

13 12.07.2017

%eax

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

Thread No Version %ebx

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

14 12.07.2017

%eax

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

Thread No Version %ebx

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

15 12.07.2017

%eax

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

movl thread_table(%eax, 4), %eax

Thread No Version %ebx

TCB pointer

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

16 12.07.2017

%eax Off_TCB_Myself()

Thread ID  TCB

Indirect via Table

Version Thread No

User

Kernel
Thread Table

movl thread_id, %eax

movl %eax, %ebx

andl mask_thread_no, %eax

movl thread_table(%eax, 4), %eax

cmpl Off_TCB_Myself(%eax), %ebx

jnz invalid_thread_id

Thread No Version %ebx

TCB pointer Thread No Version

If different, Thread

ID is outdated

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

17 12.07.2017

Thread ID  TCB

Direct Address

Version

User

Kernel

TCB area





Thread No

movl thread_id, %eax

movl %eax, %ebx

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

18 12.07.2017

Thread ID  TCB

Direct Address

Version

User

Kernel

TCB area

 Mask out lower bits



Thread No

movl thread_id, %eax

movl %eax, %ebx

andl mask_version, %eax

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

19 12.07.2017

Thread ID  TCB

Direct Address

Version

User

Kernel

TCB area

 Mask out lower bits
Bitshift


Thread No

movl thread_id, %eax

movl %eax, %ebx

andl mask_version, %eax

shrl threadno_shift, %eax

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

20 12.07.2017

Thread ID  TCB

Direct Address

Version

User

Kernel

TCB area

offset

 Mask out lower bits
Bitshift
Add offset

Thread No TCB pointer

movl thread_id, %eax

movl %eax, %ebx

andl mask_version, %eax

shrl threadno_shift, %eax

addl offset, %eax

%eax

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

21 12.07.2017

0-Mapping Trick

Direct Addressing

 Virtual TCB array

requires ≥ 256 MB

virtual memory for

256k potential TCBs

 Allocate physical memory for

TCBs on demand
 Dependent on the max

number of allocated TCBs

 Map all remaining TCBs to a

0-filled read-only page
 Any access to unused

threads will result in

“invalid thread ID” (0)
 Avoids additional check

n m r q p s

Physical Memory

TCB Array (virtual memory)

0

Frames containing TCBs.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

22 12.07.2017

Thread ID Translation

Via Table
Table access per TCB

Many TCBs per TLB entry
(TCBs on superpages)

TLB entry for table (?)

Via Computation
No table access

Few TCBs per TLB entry
(sparsely populated area)

 TCB pointer array

requires 1 MB virtual

memory for 256k

potential threads

 Virtual TCB array

requires ≥ 256 MB

virtual memory for

256k potential TCBs

Examples:

4 kB pages, 4 kB TCBs
 1 TCB per TLB entry

16 kB pages, 2 kB TCBs
 8 TCBs per TLB entry

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

23 12.07.2017

Physical TCB array (seL4)

 Problem: Virtual TCB lookups cause TLB

misses

 Virtual TCB lookup is on IPC path!

 Solution: Use physical memory instead

+ No TLB misses

+ Significantly faster overall (Nourai 2005)

+ Easy to verify

– Requires ≥ 256 MB of physical memory!
– MMU may not permit physical addressing

 Can still emulate physical memory

using huge pages + pinning

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

n m r q p s

TCB Array (physical memory)

0 0 0 0 0 0 0 0 0 0

Operating Systems Group

Department of Computer Science

24 12.07.2017

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per IPC)

ready  waiting
Delete/insert ready list is expensive

Therefore: delete lazily from ready list

ready ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

25 12.07.2017

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per IPC)

ready  waiting
Delete/insert ready list is expensive

Therefore: delete lazily from ready list

waiting ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

26 12.07.2017

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per IPC)

ready  waiting
Delete/insert ready list is expensive

Therefore: delete lazily from ready list

waiting ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

27 12.07.2017

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per IPC)

ready  waiting
Delete/insert ready list is expensive

Therefore: delete lazily from ready list

waiting ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

28 12.07.2017

Thread state toggles frequently (per IPC)

ready  waiting
Delete/insert ready list is expensive

Therefore: delete lazily from ready list

Whenever reaching a non-ready thread

Delete it from list

Proceed with next

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

ready ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

29 12.07.2017 Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

 s

disp table

Prio 100

ready

Prio 50

Lazy Dispatching

Thread state toggles frequently (per IPC)

ready  waiting
Delete/insert ready list is expensive

Therefore: delete lazily from ready list

Whenever reaching a non-ready thread

Delete it from list

Proceed with next

ready ready

do

 round robin if necessary ;

 if current[highest active p]  nil then

 B := current[highest active p] ; return

 elif highest active p > 0 then

 highest active p -= 1

 else

 idle

 fi

od .

round robin if necessary:

 while current[highest active p]  nil do

 next := current[highest active p].next ;

 if current[highest active p].state  ready then

 delete from list (current[highest active p])

 elif current[highest active p].rem ts = 0 then

 next.rem ts := new ts

 else

 return

 fi ;

 current[highest active p] := next

 od .

O(n) scheduling latency!

Operating Systems Group

Department of Computer Science

30 12.07.2017

disp table

Prio 100

Prio 50

Benno Scheduling (seL4)

Ready list contains all threads
except the currently running thread

ready ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

31 12.07.2017

disp table

Prio 100

ready

Prio 50

Benno Scheduling (seL4)

Ready list contains all threads
except the currently running thread

ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

32 12.07.2017

disp table

Prio 100

ready

Prio 50

Benno Scheduling (seL4)

Ready list contains all threads
except the currently running thread

ready  waiting
Don’t re-insert blocked thread

ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

33 12.07.2017

disp table

Prio 100

Prio 50

Benno Scheduling (seL4)

Ready list contains all threads
except the currently running thread

ready  waiting
Don’t re-insert blocked thread

ready

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

34 12.07.2017

ADDRESS-SPACE LAYOUT

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

35 12.07.2017

Address-Space Layout
32bits, Virtual TCBs

User regions

Shared system
regions

Per-space system
regions

 Other kernel tables

 Physical memory

 Kernel code

 TCBs

phys mem

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

36 12.07.2017

Shared Region Synchronization

phys mem

We have

Region shared among all address spaces

Separate page table per address space

Updates occur in dynamic region

May lead to inconsistencies

We need

Some form of synchronization within
dynamic region

Make sure valid virtual memory
mappings are synchronized

Static
region

Dynamic
region

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

37 12.07.2017

if (master entry valid)

TCB Area Synchronization
Basic Algorithm

Dedicate one table as master

Synchronize with master table on page
faults

Page fault algorithm:

Static
region

Dynamic
region

Master Table

if (master entry valid) {

 copy entry from master

}

if (master entry valid) {

 copy entry from master

} else

if (master entry valid) {

 copy entry from master

} else {

 create new entry in master

 copy entry from master

}

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

38 12.07.2017

IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

39 12.07.2017

IPC – API

Operations

Send to

Receive from

Receive

Call

Send to & Receive any

Send to & Receive from

Send async

Message Types

Registers

Strings

Map pages

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

40 12.07.2017

Message Construction

Messages are stored in
registers (MR0  MR63)

First register (MR0) acts
as message tag

Subsequent registers
contain

Untyped words (u), and

Typed words (t)
(e.g., map item, string item)

label flags t u MR0

Message Tag

Various IPC flags

Number of typed

words

Number of

untyped words

Freely available

(e.g., request type)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

41 12.07.2017

Message Construction

Typed items occupy one
or more words

Four currently defined
items

Map item (2 words)

Grant item (2 words)

String item (2+ words)

Capability (2 words)

Typed items can have
arbitrary order

label flags t u MR0

Message

MR2

MR3

MR1

3

MR8

MR7

MR6

MR5

MR4

5

Map Item

String Item

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

42 12.07.2017

Map and Grant Items

Two words

Send base

Fpage

Lower bits of send base
indicates map or grant
item

send base

send fpage

0 100C

Map Item

send base

send fpage

0 101C

Grant Item

location size t 0wrx

Fpage

MRi

MRi+1

MRi

MRi+1

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

43 12.07.2017

String Items

Up to 4 MB (per string)

Compound strings
supported

Allows scatter-gather

Incorporates cacheability
hints

Reduce cache pollution
for long copy operations

string length

string pointer

String Item

0 0 0hhC MRi

MRi+1

“hh” indicates cacheability
hints for the string

E.g., only use L2 cache,

or do not use cache at all

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

44 12.07.2017

Receiving Messages

Receiver buffers are
specified in registers (BR0 …
BR33)

First BR (BR0) contains
ɀAcceptorɁ

May specify receive window
(if not nil-fpage)

May indicate presence of
receive strings/buffers
(if s-bit set)

Acceptor

receive window 000s BR0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

45 12.07.2017

Receiving Messages

Acceptor

receive window 000s BR0

string length

string pointer

0 0 0hhC BR1

BR2

0001

The s-bit set indicates presence

of string items acting as receive

buffers

string length

string pointer

0 0 0hhC BR3

BR4

0hh1

If C-bit in string item is set, it

indicates presence of more

receive buffers

string pointer

j - 1

BR5 string pointer

BR3+j

A receive buffer can of course

be a compound string

If C-bit in string item is cleared,

it indicates that no more

receive buffers are present

0hh0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

46 12.07.2017

hot spot SBZ

hot spot SBZ

hot spot SBZ

Receiving mappings in Fiasco.OC

Receive Buffers (BR0 … BR58)

l 4_ut cb_br ()

Recv Fpage specifies location in
receiver address space

Hot spot: disambiguates when
send/recv fpage sizes differ

Look at f r ee_const r ai nt

in / ker nel / f i asco/ sr c/ ker n/ map_ut i l . cpp

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

recv Fpage (type=obj)

attrib 1i00

Capability Receive Map Item

BR4

BR5

Mem=0 IO
capability

=4
Flags (unused)

F

P

U

 31 24 14 10| 9 5| 4 0

recv Fpage (type=mem)

attrib 1i00

Memory Receive Map Item

BR2

BR3

recv Fpage (type=mem)

attrib 1i00

Memory Receive Map Item

BR0

BR1

hot spot SBZ attrib 1i10

Capability Single Buffer Receive Item

BR6

g/s bit

Operating Systems Group

Department of Computer Science

47 12.07.2017

Timeouts

snd timeout, rcv timeout, xfer timeout snd, xfer timeout rcv

snd to

min (xfer to snd, xfer to rcv)

rcv to

min (xfer to rcv, xfer to snd)

time

wait for send
send message

(xfer)
wait for reply

receive message

(xfer)

(specified by the partner thread)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

48 12.07.2017

Timeout Issues

What timeout values
are typical or
necessary?

How do we encode
timeouts to minimize
space needed to specify
all four values?

Timeout values

∞ (infinite)

Client waiting for a
(trusted) server

0 (zero)

Server responding to a
client

Polling

Specific time

1 us – 610 h (log)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

 2
e
m µs m(10) 0 e(5)

Operating Systems Group

Department of Computer Science

49 12.07.2017

Timeout values

∞ (infinite)

Client waiting for a
(trusted) server

0 (zero)

Server responding to a
client

Polling

Specific time

1 µs – 610 h (log)

Timeout Issues

Does not happen in
practice

Cannot predict how long
a given transfer will
take

SeL4: 1 bit timeout
(zero or infinite)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

50 12.07.2017

Preserved by

kernel during

context switch

What are Virtual Registers?

Virtual registers are backed by
either

Physical registers, or

Non-pageable memory

UTCBs hold the memory backed
registers

UTCBs are thread local

UTCB can not be paged

No page faults

Registers always accessible

EBX

EBP

ESI

Physical Registers

UTCB
Preserved by

switching UTCB

on context switch

MR4

MR3

MR63

MR62

MR61

Virtual Registers

MR63

MR62

MR61

MR4

MR3

MR2

MR1

MR0

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

51 12.07.2017

Implementation Goal

Most frequent kernel op: short IPC
Thousands of invocations per second

Performance is critical
Structure IPC for speed

Structure entire kernel to support fast IPC

What affects performance?
Cache line misses

TLB misses

Memory references

Pipe stalls and flushes

Instruction scheduling

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

52 12.07.2017

Fast Path

Optimize for common cases
Write in assembler

Non-critical paths written in C++
But still fast as possible

Avoid high-level language overhead
Function call state preservation

Incompatible code optimizations

We want every cycle possible!
At least sometimes …

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

53 12.07.2017

Avoid memory accesses

Memory references are slow

Avoid in IPC

E.g., use lazy scheduling

Avoid in common case

E.g., (xfer) timeouts

Microkernel should minimize artifacts

Cache pollution

TLB pollution

Memory bus

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

54 12.07.2017

 Short IPC
Kernel Stacks

and TCBs

%ESP0

Kernel

memory

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

55 12.07.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

 Short IPC

Operating Systems Group

Department of Computer Science

56 12.07.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

 Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

57 12.07.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

 Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

58 12.07.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

59 12.07.2017

EAX

ECX

EDX

EBX

ESI

EDI

EBP

ESP

EFLAGS

EIP

SS CS

DS ES

FS GS

Short IPC

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

60 12.07.2017

String IPC / memcpy

Why?

Trust

Granularity

Synchronous
(ɀatomicɁ) transfer

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

61 12.07.2017

Copy In – Copy Out

Copy into kernel buffer

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

62 12.07.2017

Copy In – Copy Out

Copy into kernel buffer

Switch spaces

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

63 12.07.2017

Copy In – Copy Out

Copy into kernel buffer

Switch spaces

Copy out of kernel buffer

Costs for n words

 22n r/w operations

 Example: 8 words / cache

 3n/8 cache lines

 1n/8 cache misses

(small n)

 4n/8 cache misses

(large n)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

64 12.07.2017

Temporary Mapping

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

65 12.07.2017

Temporary Mapping

 Select dest area (2x4 MB)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

66 12.07.2017

Temporary Mapping

 Select dest area (2x4 MB)

 Map into source AS

(kernel)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

67 12.07.2017

Temporary Mapping

 Select dest area (2x4 MB)

 Map into source AS

(kernel)

 Copy data

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

68 12.07.2017

Temporary Mapping

 Select dest area (2x4 MB)

 Map into source AS

(kernel)

 Copy data

 Switch to dest space

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

69 12.07.2017

Temporary Mapping

Copy 2 page directory entries
(PDEs) from dest

Addresses in temporary
mapping area are resolved
using dest’s page tables

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

70 12.07.2017

String IPC: Better than shared

memory?

Trust?

Grant items prevent unmapping

Granularity?

Sender decides memory layout

Synchronous (ɀatomicɁ) transfer?
Additional short IPC for signaling

Tunneled page faults, copy area
multiplexing

Violates minimality

No string IPC in 3rd gen L4!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

71 12.07.2017

MAPPING

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

72 12.07.2017

Mechanisms

We need tools to build address spaces

Map

Unmap

We need security

Access permissions [rwx]

We need resource control

Page fault messages [detect page use]

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

73 12.07.2017

Map

Map Map

Map

A

B

C

D

E

Agreed to receive

mapping.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

74 12.07.2017

Unmap

Unmap Unmap’

A

B

C

D

E

Implicit consent to

unmap.

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

75 12.07.2017

Grant

Grant

Grant

A

B

C

D

E

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

76 12.07.2017

Access Rights – Map

rx

rwx

rx

A

B

C

D

r = Read

w = Write

x = eXecute

rx

rwx

 Mapper may restrict

access rights

 Cannot extend its own

access rights

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

77 12.07.2017

Access Rights – Unmap

rx

rwx

rx

A

B

C

D

unmap(x)

 Mapper may revoke

partial access rights

 Unmap transitively

affects mappings

 Cannot extend other’s
access rights

Preserves idea of

synchronous mapping

rx

rx

r = Read

w = Write

x = eXecute

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

78 12.07.2017

Mapping Regions

A

B

C

D

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

79 12.07.2017

Mapping Regions: Flex Pages

Abstraction: flex page

Contiguous regions of virtual address space

Sparse physical mappings possible

Called fpage

Abstracts architecture’s page sizes

Fpage semantics

Inseparable object

Aligned to its size

Size is power of 2, min. 4096=212 byte

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

80 12.07.2017

Fpage Encoding

fpage(base, size=2s)

 s ≥ 12

 base mod 2s = 0

Special cases
 Complete address space

(base=0, s=1)

 Nothing: nilpage (0)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

20/52 bits 6 bits 4 bits 2 bits

base / 212 s type 0 r w x

Type
L4_FPAGE_SPECIAL = 0,

L4_FPAGE_MEMORY = 1,

L4_FPAGE_IO = 2,

L4_FPAGE_OBJ = 3, //capability

Operating Systems Group

Department of Computer Science

81 12.07.2017

Map pages by
copying page table
entries

No support (yet) for
Recursive unmap

AS(A)

AS(B)

map

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Mapping Pages

Operating Systems Group

Department of Computer Science

82 12.07.2017

Mapping Database

A

B

D C

E

X

physical

frames

A[1]

B[7]

D[0] C[2]

E[0]

physical

frames

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

83 12.07.2017

INTERRUPTS + EXCEPTIONS

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

84 12.07.2017

Event Handling

1. Program executes happily

2. Event occurs

3. Activate event handler

Save current state

Switch to privileged mode

Execute event handler

4. Fix the problem / handle event

5. End of event handling

Restore state

Switch to previous mode

Continue interrupted program

6. Program executes happily again

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

85 12.07.2017

Page Fault IPC

PF IPC

res IPC

Pager Application

map msg

"PF" msg

IP

fault addr

rwx

PF-IPC synthesized by the

kernel, pager’s reply caught
by the kernel (application is

not informed/involved)

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

86 12.07.2017

Page Fault Receive Window

A

receive

window

Pager

PF message

Map item offset,

specified by pager

Configured by

kernel

Pager can overmap

entire address

space.

Liedtke: “The
SawMill Framework

for Virtual Memory

Diversity”

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

87 12.07.2017

EAX
SP
IP

…

EAX
SP
IP

…

Exception

Handler
Application

continue msg

exception msg

Kernel modifies register

contents according to reply

message

New Exception Handling Model

Except.-IPC synthesized by the
kernel, handler’s reply caught

by the kernel (application is not
informed/involved).

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

88 12.07.2017

Synchronous vs. asynchronous interrupt IPC

Interrupt

thread
Application

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

receive

Operating Systems Group

Department of Computer Science

89 12.07.2017

Synchronous vs. asynchronous interrupt IPC

Interrupt

thread
Application

“INT x" msg

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

running receive

Operating Systems Group

Department of Computer Science

90 12.07.2017

Synchronous vs. asynchronous interrupt IPC

Interrupt

thread
Application

“INT x" msg

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

running receive

Int

X

Operating Systems Group

Department of Computer Science

91 12.07.2017

Synchronous vs. asynchronous interrupt IPC

Interrupt

thread
Application “ACK” msg

“INT x" msg

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

receive X

Operating Systems Group

Department of Computer Science

92 12.07.2017

Synchronous vs. asynchronous interrupt IPC

Interrupt

thread
Application “ACK” msg

“INT x" msg

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

receive

“INT x" msg

Operating Systems Group

Department of Computer Science

93 12.07.2017

SECURITY

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

94 12.07.2017

Authentication Authorization

Security Policy

Specifies who has what type of access to which
resources

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

95 12.07.2017

Authentication

Unforgeable endpoint identifiers

Thread ID of sender returned by kernel

Capabilities generated by kernel

Thread identifiers can be mapped to

Tasks

Users

Groups

Machines

Domains

Authentication is outside the microkernel – any policy can be
implemented

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

96 12.07.2017

Authorization

Servers implement objects; clients access objects
via IPC

Servers receive unforgeable client identities from
the IPC mechanism

Servers can implement arbitrary access control policy

No special mechanisms needed in the microkernel

Is this really true???

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

97 12.07.2017

Capabilites

Capabilites encode the right to perform a specific
operation on a specific kernel object

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App Kernel
IPC-

gate

IPC-

cap

Invoke

Send

Operating Systems Group

Department of Computer Science

98 12.07.2017

Communication Spaces with capabilites

σ0

B1 B0 B2

C1 C0

A0

A0 σ0 B0 B1 B2 C0 C1

σ0 B0 B1 B2 C0 C1

A0 σ0 C0

A0 B0 C0 C1

map

map

map

map

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

99 12.07.2017

Capability properties

Capabilities contain

Pointer to a kernel object

Access rights

Capabilities live in kernel space

Not directly accessible to user

Referenced by index in per-AS capability array

Capabilities provide:

Fine-grained access control

Local naming (name = idx in capability array)

Index has no meaning in other ASes!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

100 12.07.2017

System calls with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

101 12.07.2017

System calls with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

Thrd-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

102 12.07.2017

System calls with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

Thrd-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

Args

Invoke

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

TC

Operating Systems Group

Department of Computer Science

103 12.07.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

104 12.07.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

IPC-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

Operating Systems Group

Department of Computer Science

105 12.07.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

IPC-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

Args

Invoke

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Thread object

TC

Operating Systems Group

Department of Computer Science

106 12.07.2017

System call indirection with capabilities

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

App

Kernel

IPC-

cap MR0 MR1 MR2 MR3 MR4

Roottask

I want to do

Thread-

Control

Here is your

capability

Args

Invoke

MR0 MR1 MR2 MR3 MR4

Thrd-

cap

Invoke

Args

Thread object

TC TC

Operating Systems Group

Department of Computer Science

107 12.07.2017

Other Key Ideas

Avoid memory

No indirection (TCB area)

Lazy scheduling

Make clever use of HW features

Sysenter/sysexit  IPC

Serialize recursive algorithms

ɀRecursiveɁ unmap

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

Operating Systems Group

Department of Computer Science

108 12.07.2017

General Hints

Study concepts, not details

Give short but detailed answers

If you don’t know the answer, think aloud

Local IPC and Small spaces will NOT be on the exam!

And most importantly

Don’t panic!

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017

